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Abstract: We investigate the hybrid exotic meson with JPC = 1−+ within the framework

of an AdS/QCD model. Introducing a holographic field dual to the operator for hybrid

exotic meson, we obtain the eigen-value equation for its mass. Fixing all free parameters

by AdS/CFT dictionaries, we predict the masses of the hybrid exotic meson. The results

turn out to be 1476MeV for the ground state, and 2611MeV for the first excited one.

Being compared with the existing experimental data for the π1(1400), which is known to

be mπ1
= 1351± 30MeV, the present result seems to be qualitative in agreement with it.

We also predict the decay constant of π1(1400): Fπ1
= 10.6 MeV.
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1. Introduction

There has been a considerable amount of interest in exotic mesons well over decades, since

it cannot be explained by the conventional constituent quark model in which mesons consist

of quark and antiquark pairs (qq̄). The nonexotic mesons are restricted to have quantum

numbers constrained by the following selection rules: P = (−1)L+1 and C = (−1)L+S ,

where L and S denote the relative orbital angular momentum and total spin of quarks

consisting of mesons. Thus, an exotic meson with JPC = 1−+ cannot be explained as a qq̄

state. It is only possible to produce such a state either as a multi-quark state (tetraquark)

or as a quark-gluon hybrid state. In particular, it is of great importance to understand the

quark-gluon hybrid exotic mesons, since it provides a key to examine the role of the gluons

as basic building blocks for hadrons.

Since Jaffe and Johnson suggested a possible existence of hybrid mesons [1], there

has been a great deal of theoretical investigations (see a recent review [2] for full refer-

ences): For example, the bag model [3 – 7], the flux tube model [8 – 12], the QCD sum

rules [13 – 18], lattice QCD [19 – 21], etc. Deep electro-production of exotic hybrid mesons

was studied in [22]. Experimentally, a hint of the exotic meson was already observed many

years ago [23]. Later, the lowest-lying hybrid exotic meson has been found by various

experimental collaborations [24 – 29] and was christened π1(1400). The π1(1400) is now

announced with its mass mπ1
= 1351 ± 30 MeV and width Γπ1

= 313 ± 40 MeV by the

Particle Data Group (PDG) [30].

The AdS/CFT correspondence [31 – 33] that connects a strongly coupled large Nc

gauge theory to a weakly coupled supergravity provides novel and attractive insight into

nonperturbative features of quantum chromodynamics (QCD) such as the quark confine-

ment and spontaneous breakdown of chiral symmetry (SBχS). Though there is still no

rigorous theoretical ground for such a correspondence in real QCD, this new idea has

triggered a great amount of theoretical works on possible mappings from nonperturbative

QCD to 5D gravity, i.e. holographic dual of QCD. In fact, there are in general two different

routes to modeling holographic dual of QCD (See, for example, a recent review [34]): One
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way is to construct 10 dimensional (10D) models based on string theory of D3/D7, D4/D6

or D4/D8 branes [35 – 39]. The other way is so-called a bottom-up approach to a holo-

graphic model of QCD, often called as AdS (Anti-de Sitter Space)/QCD [40 – 42] in which

a 5D holographic dual is constructed from QCD, the 5D gauge coupling being identified by

matching the two-point vector correlation functions. Despite the fact that this bottom-up

approach is somewhat on an ad hoc basis, it reflects some of most important features of

gauge/gravity dual. Moreover, it is rather successful in describing properties of hadrons

(See the recent review [34]).

In the present work, we want to investigate the quark-gluon hybrid meson with JPC =

1−+, in particular, π1(1400), based on the AdS/QCD model developed by refs. [40 – 42].

Since the hybrid exotic mesons exist in large Nc QCD as narrow resonant states [43], it is

worth while to study it within AdS/QCD. Moreover, the AdS/QCD model has a virtue in

dealing with gluonic operators for ease of application, since the 5D bulk fields corresponding

to them can be much more easily handled. In AdS/QCD, the π1(1400) may be regarded

as a spin-1 bulk field with quantum number JPC = 1−+. It can be identified as the ground

state of the Kaluza-Klein (KK) modes in this channel. The eigenvalue equation for the

π1(1400) is derived from the classical equation of motion from the 5D action, so that the

mass of the π1(1400) can be obtained by solving this equation. In fact, we will show that

the π1(1400) mass arises from the first zero of the modified Bessel function K3.

The present work is organized as follows: In section 2, we briefly review the present

status of theoretical works for the hybrid exotic mesons. In section 3, we explain briefly

the hard-wall AdS/QCD model with the bulk field for the hybrid exotic meson taken

into account. Then, we present the result for the mass of the hybrid exotic meson with

JPC = 1−+ and compare it with those of various models and experimental data. We also

show the result of the decay constant of the π1 hybrid exotic meson. In the last section,

we summarize the present work.

2. Hybrid exotic meson with J
PC = 1−+

As already mentioned in Introduction, the hybrid exotic mesons have been studied exten-

sively in many different theoretical frameworks. In 1980s, various versions of the MIT bag

model with transverse gluon fields were invoked to predict the existence of the hybrid exotic

meson with JPC = 1−+ under the name of qq̄G hermaphrodite meson or meikton [3 – 7].

In the MIT bag model, the lowest state of hybrid exotic mesons consists of (qq̄) and of

a transverse TE (magnetic) gluon that is the lowest gluonic eigenmode due to the MIT

boundary conditions. Having considered O(αs)-order energy shifts, refs. [6, 7] predicted

the mass of the lowest hybrid exotic state with JPC = 1−+ to be around 1400 MeV.

The flux tube model was frequently used to investigate the hybrid exotic mesons. The

model was extracted from the strong coupling Hamiltonian lattice formulation of QCD [44].

The term, “flux tube”, mimics a roughly cylindrical region of chaotic gluon fields, which

confines widely separated static color sources. This flux tube leads to a confining linear

potential between color singlet q and q̄. The model contains normal modes of excitation
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only to the locally transverse spatial direction. The model predicts the lowest state of

hybrid exotic meson in the range of 1800 − 2100 MeV [8 – 11, 45, 12].

In QCD sum rules, the predictions of the mass of the hybrid exotic meson with JPC =

1−+ do not seem consistent: For example, Balitsky et al. [13, 14] estimate the mass around

1000 − 1300 MeV, while Latorre et al. [15] vote for M(1−+) ≈ 2.1 GeV. Refs. [16 – 18]

suggest even M(1−+) ≈ 2500 MeV.

While lattice QCD is the most promising way of describing low-energy phenomena in

QCD, it is still far from the real world, since the pion mass in lattice QCD is still larger than

the physical pion mass mπ = 139.57 MeV. In fact, Thomas and Szczepaniak [47] examined

chiral extrapolations in exotic meson spectrum and found that the linear extrapolation does

not seem working, since the self-energy corrections to the exotic meson mass are most likely

to introduce some non-linearity in the chiral extrapolation of lattice calculation of its mass.

In QCD, the hybrid exotic meson with JPC = 1−+ can be treated as a vector operator

consisting of the quark, antiquark and gluon:

Ja
µ(x) = ψ̄(x)T aGµα(x)γαψ(x), (2.1)

where ψ(x) and Gµα denote the quark field and the gluon field strength defined as Gµα =

GA
µαt

A with color matrices tA (tr[tAtB] = δAB/2). The T a represent the flavor matrices

and we take it as Pauli matrices, since we consider only flavor SU(2) in the present work.

The two-point correlation function [14] for the vector current in eq. (2.1) is written as

Πµν =

∫

d4xeiq·x〈T (Ja
µ(x)Jb

ν(0))〉0 = −
(

gµν − qµqν
q2

)

Πab
V (q2) +

qµqν
q2

Πab
S (q2), (2.2)

where ΠV (q2) includes the intermediate hybrid exotic vector mesons with JPC = 1−+,

whereas ΠS(q2) contains the hybrid exotic scalar mesons JPC = 0++. The result of the

operator product expansion (OPE) [14] is given as follows:

ΠV (q2) = −(N2
c − 1)

2715π3
q6 ln(−q2) + · · · , (2.3)

ΠS(q2) = −(N2
c − 1)

2815π3
q6 ln(−q2) + · · · , (2.4)

where ΠV,Sδ
ab/2 = Πab

V,S.

We will use this expression (2.4) to fix the 5D bulk field for the hybrid exotic meson.

3. Hybrid exotic mesons in AdS/QCD

The metric of an AdS space is defined as

ds2 = gMNdx
MdxN =

1

z2
(ηµνdx

µdxν − dz2), (3.1)

where ηµν denotes the 4D Minkowski metric: ηµν = diag(1, −1, −1, −1). The AdS space

is compactified: IR boundary at z = zm, and UV at z = ǫ→ 0. Thus, the model is justified
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within the range: ǫ ≤ z ≤ zm. The 5D gauge action in AdS5 space with the bulk field for

the hybrid exotic meson with JPC = 1−+ contained can be expressed as

S =

∫

d4xdz
√
gTr

[

− 1

4g̃2
5

FMNF
MN +

1

2
m2

5VMV
M

]

, (3.2)

where FMN = ∂MVN −∂NVM −i[VM , VN ] and M, N = 0, 1, 2, 3, 4. The gauge field, which

is dual to the 4D current in eq. (2.1), is defined as VM = V a
M t

a with tr(tatb) = δab/2. Note

that the 5D gauge coupling g̃5 is not identical to the gauge coupling in [40, 41], where the

bulk gauge field is dual to a 4D vector current ψ̄(x)γµtaψ(x). The 5D mass m2
5 of the bulk

field VM is determined by the relation m2
5 = (∆ − p)(∆ + p− 4) [32, 33], where ∆ stands

for the dimension of the corresponding operator with spin p. Since the dimension and spin

of the operator in eq. (2.1) are ∆ = 5 and p = 1, respectively, we get the 5D mass of the

bulk field VM is: m2
5 = (5− 1)(5 + 1− 4) = 8. The hybrid exotic meson π1(1400) may be

regarded as the ground state of the Kaluza-Klein (KK) modes. We remark that a scalar

condensate of qq̄G, quark-gluon mixed condensate, was studied in an AdS/QCD model [46].

In ref. [48], it was shown that for small z or near the boundary of AdS space, a 5D

field φ(x, z) dual to a 4D operator O can be expressed as

φ(x, z) = z4−∆−p
[

φ0(x) +O(z2)
]

+ z∆−p
[

A(x) +O(z2)
]

, (3.3)

where φ0(x) is a prescribed source function for O(x) and A(x) denotes a physical fluctuation

that can be determined from the source by solving the classical equation of motion. It can

be directly related to the vacuum expectation value (VEV) of the O(x) as follows [48]:

A(x) =
1

2∆ − 4
〈O(x)〉. (3.4)

Therefore, the bulk field V for the exotic meson has the following asymptotic form at the

boundary z = ǫ:

V (z) = c1
1

z2
+ c2z

4, (3.5)

where c1 is the source term.

We now fix the 5D gauge coupling g̃5 by matching the two-point vector correlation

function obtained with the action in (3.2) to the leading contribution from the OPE result

shown in eq. (2.3) [14]. Here we choose the axial-like gauge condition Vz(x, z) = 0. It can

be decomposed into the transverse and longitudinal parts: Vµ = (Vµ)⊥ +(Vµ)‖. Using the

Fourier transform of the vector field: V a
µ =

∫

d4xeiq·xV a
µ (x, z), we can write the equation

of motion for the transverse part of the vector field as follows:

[

∂z

(

1

z
∂zV

a
µ (q, z)

)

+

(

q2

z
− C2

5/z
3

)

V a
µ (q, z)

]

⊥

= 0 , (3.6)

where C2
5 ≡ m2

5g̃
2
5 . The corresponding solution of eq. (3.6) can be expressed as a separa-

ble form:

(V a
µ (q, z))⊥ = V (q, z)V

a
µ(q), (3.7)
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where V
a
µ(q) is the Fourier transform of the source of the 4D vector-current operator

ψ̄T aGµαγ
αψ. The explicit solution for V (q, z) can be derived by solving eq. (3.6),

V (Q, z) = c1zIn(Qz) + c2zKn(Qz) , (3.8)

where In and Kn are modified Bessel functions, n =
√

1 + C2
5 , and Q2 = −q2. The asymp-

totic form of the bulk vector field at the boundary z = ǫ, which is shown in eq. (3.5),

dictates the following boundary condition: V (Q, ǫ) = c/ǫ2. Here, c is a constant to be

fixed. We refer to ref. [42] for a similar procedure for a non-exotic scalar two-point corre-

lator. Imposing the UV boundary condition V (Q, ǫ) ∼ 1/ǫ2, we obtain n = 3 (C2
5 = 8),

and c2 = cK−1
3 (Qǫ)/ǫ3. Note that C2

5 = 8 implies g̃2
5 = 1 since m2

5 = 8. Thus, the asymp-

totic behavior of the bulk vector field dictated by the AdS/CFT correspondence uniquely

determines the 5D gauge coupling. Since the two-point vector correlation function will be

obtained at the UV, z = ǫ, we will not explicitly consider the IR boundary condition that

will fix c1. Then, following the standard procedure given in [40 – 42], we obtain

ΠV (Q2) = − 1

64
c2Q6 lnQ2. (3.9)

Comparing this with the OPE given in eq. (2.3) in the leading Q2 order, we obtain

c2 =
N2

c − 1

30π3
. (3.10)

We are now in a position to predict the mass of π1(1400). Note that we have no free

parameter that we may play around to get a desirable value of mπ1
. The mode equation

for the exotic meson reads
(

∂2
z − 1

z
∂z +m2

i −
8

z2

)

fi(z) = 0 , (3.11)

where Vµ(x, z) =
∑

i fi(z)V
(i)
µ (x). The solution is given by, in terms of the Bessel functions,

fi(z) = a1zJ3(miz) + a2zY3(miz) . (3.12)

The KK masses for the exotic mesons are fixed by the IR boundary condition ∂zfi(z)|z=zm
=

0:

mizmJ2(mizm) − 2J3(mizm) = 0 . (3.13)

Taking i = 1 for the ground state, we obtain the mass of π1 to be mπ1
≃ 1476 MeV that

is close to the experimental value mπ1
= 1351 ± 30 MeV [30]. In table 1, we compare the

present result with other models. The next excited mass for the hybrid exotic meson turns

out to be 2611 MeV. As usual, the excited mass seems to be quite large, compared to the

ground state.

Finally, we consider decay constant of π1. The decay constant of the π1 [14] is defined as

〈0|ψ̄(x)T aGµα(x)γαψ(x)|πb
1(p)〉 =

1√
2
Fπ1

m3
π1
εµδ

abeip·x, (3.14)
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Models Mass [MeV]

Present model 1476

Flux tube models [8 – 11, 45, 12] 1800–2100

Bag models [6, 7] 1300–1800

QCD sum rules [13 – 18] 1200–2500

Lattice QCD [19 – 21] 1800–2300

Experiment (PDG) [30] 1351 ± 30

Table 1: Comparison with the results of other models

where Fπ1
denotes the decay constant of the π1. The εµ is for its polarization vector.

Following the procedure sketched in [40], we arrive at the definition of Fπ1
in AdS/QCD:

(Fπ1
m3

π1
)2 =

c2

g̃2
5

(

f ′1(ǫ)

ǫ3

)2

, (3.15)

where f1(z) is the normalized solution of the mode equation, eq. (3.11), with i = 1. Note

that the definition of F 2
π1

is slightly different from that of ρ-meson given in [40]:

F 2
ρ =

1

g2
5

[ψ′
ρ(ǫ)/ǫ]

2 . (3.16)

The discrepancy is basically due to a difference in UV boundary conditions: V (q, ǫ) = c/ǫ2

for π1(1400), V (q, ǫ) = 1 for ρ-meson. Taking Nc = 3 in eq. (3.10), we obtain Fπ1
=

10.6 MeV. Compared to the the value of the decay constant from the QCD sum rules [14]

Fπ1
≈ 20 MeV, the result is qualitatively in almost the same order.

4. Summary

The present work has aimed at investigating the hybrid exotic mesons with JPC = 1−+

within the framework of AdS/QCD. We have first introduced the 5D bulk field dual to

the 4D quark-gluon vector current ψ̄T aGµαγ
αψ and constructed the 5D bulk action for

the exotic meson. Solving the classical equation of motion for the transverse part of the

hybrid exotic vector field, we have obtained the explicit form of the vector field in terms

of the modified Bessel functions with index n =
√

1 +m2
5g̃

2
5 . Imposing the UV boundary

condition for the vector field to calculate the two-point correlation function, we have de-

termined n = 3, which fixes the 5D gauge coupling. We have then obtained the eigenvalue

equation for the hybrid exotic meson mass.

In order to find the mass of the hybrid exotic meson π1(1400), we have identified it

as the ground state of the KK modes. The mass of the π1(1400) turned out to be mπ1
≃

1476MeV that is close to the experimental data: 1351 ± 30MeV, which is a remarkable

result, considering the fact that the formalism from AdS/QCD is so simple. The mass of

the next excited state in the hybrid exotic channel turns out to be 2611 MeV. Similar to

the ρ mesons in the hard wall model for non-exotic mesons [40, 41], the mass of the excited

state seems quite large in the present study. We also predicted the decay constant of π1

(1400): Fπ1
= 10.6 MeV. Finally, we remark that it will be interesting to see if one can

study the hybrid exotic meson in a stringy set-up.

– 6 –
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